Sommario:
- Passaggio 1: hardware richiesto:
- Passaggio 2: collegamento hardware:
- Passaggio 3: codice per la misurazione della temperatura:
- Passaggio 4: applicazioni:
Video: Monitoraggio della temperatura utilizzando MCP9808 e Particle Photon: 4 passaggi
2024 Autore: John Day | [email protected]. Ultima modifica: 2024-01-30 10:02
MCP9808 è un sensore di temperatura digitale ad alta precisione ±0,5°C I2C mini modulo. Sono dotati di registri programmabili dall'utente che facilitano le applicazioni di rilevamento della temperatura. Il sensore di temperatura ad alta precisione MCP9808 è diventato uno standard industriale in termini di fattore di forma e intelligenza, fornendo segnali del sensore calibrati e linearizzati in formato digitale I2C.
In questo tutorial è stato dimostrato l'interfacciamento del modulo sensore MCP9808 con il fotone particellare. Per leggere i valori di temperatura, abbiamo utilizzato raspberry pi con un adattatore I2c. Questo adattatore I2C rende la connessione al modulo sensore facile e più affidabile.
Passaggio 1: hardware richiesto:
I materiali di cui abbiamo bisogno per raggiungere il nostro obiettivo includono i seguenti componenti hardware:
1. MCP9808
2. Fotone particellare
3. Cavo I2C
4. Scudo I2C per fotoni di particelle
Passaggio 2: collegamento hardware:
La sezione sui collegamenti hardware spiega sostanzialmente le connessioni di cablaggio richieste tra il sensore e il fotone particellare. Garantire connessioni corrette è la necessità di base mentre si lavora su qualsiasi sistema per l'output desiderato. Quindi, i collegamenti necessari sono i seguenti:
L'MCP9808 funzionerà su I2C. Ecco lo schema elettrico di esempio, che mostra come cablare ciascuna interfaccia del sensore.
Di default, la scheda è configurata per un'interfaccia I2C, quindi consigliamo di utilizzare questo collegamento se sei altrimenti agnostico. Tutto ciò di cui hai bisogno sono quattro fili!
Sono necessarie solo quattro connessioni pin Vcc, Gnd, SCL e SDA e questi sono collegati con l'aiuto del cavo I2C.
Queste connessioni sono mostrate nelle immagini sopra.
Passaggio 3: codice per la misurazione della temperatura:
Cominciamo ora con il codice particellare.
Durante l'utilizzo del modulo sensore con arduino, includiamo la libreria application.h e spark_wiring_i2c.h. La libreria "application.h" e spark_wiring_i2c.h contiene le funzioni che facilitano la comunicazione i2c tra il sensore e la particella.
L'intero codice particella è riportato di seguito per comodità dell'utente:
#includere
#includere
// L'indirizzo I2C di MCP9808 è 0x18(24)
#define Indirizzo 0x18
float cTemp = 0, fTemp = 0;
configurazione nulla()
{
// Imposta variabile
Particle.variable("i2cdevice", "MCP9808");
Particle.variable("cTemp", cTemp);
// Inizializza la comunicazione I2C come MASTER
Wire.begin();
// Inizializza la comunicazione seriale, imposta la velocità di trasmissione = 9600
Serial.begin(9600);
// Avvia la trasmissione I2C
Wire.beginTransmission(Addr);
// Seleziona il registro di configurazione
Wire.write(0x01);
// Modalità di conversione continua, impostazione predefinita all'accensione
Wire.write(0x00);
Wire.write(0x00);
// Interrompi trasmissione I2C
Wire.endTransmission();
// Avvia la trasmissione I2C
Wire.beginTransmission(Addr);
// Seleziona il registro di risoluzione
Wire.write(0x08);
// Risoluzione = +0.0625 / C
Wire.write(0x03);
// Interrompi trasmissione I2C
Wire.endTransmission();
ritardo(300);
}
ciclo vuoto()
{
dati int senza segno[2];
// Avvia la comunicazione I2C
Wire.beginTransmission(Addr);
// Seleziona registro dati
Wire.write(0x05);
// Interrompe la trasmissione I2C
Wire.endTransmission();
// Richiedi 2 byte di dati
Wire.requestFrom(Addr, 2);
// Legge 2 byte di dati
//temp msb, temp lsb
if(Filo.disponibile() == 2)
{
data[0] = Wire.read();
data[1] = Wire.read();
}
ritardo(300);
// Converti i dati a 13 bit
int temp = ((data[0] & 0x1F) * 256 + data[1]);
if(temp > 4095)
{
temperatura -= 8192;
}
cTemp = temperatura * 0,0625;
fTemp = cTemp * 1,8 + 32;
// Invia i dati alla dashboard
Particle.publish("Temperatura in gradi Celsius: ", String(cTemp));
Particle.publish("Temperature in Fahrenheit: ", String(fTemp));
ritardo (500);
}
La funzione Particle.variable() crea le variabili per memorizzare l'output del sensore e la funzione Particle.publish() visualizza l'output sulla dashboard del sito.
L'uscita del sensore è mostrata nell'immagine sopra come riferimento.
Passaggio 4: applicazioni:
Il sensore di temperatura digitale MCP9808 ha diverse applicazioni di livello industriale che incorporano congelatori e frigoriferi industriali insieme a vari robot da cucina. Questo sensore può essere impiegato per vari personal computer, server e altre periferiche per PC.
Consigliato:
Monitoraggio della temperatura utilizzando MCP9808 e Raspberry Pi: 4 passaggi
Monitoraggio della temperatura utilizzando MCP9808 e Raspberry Pi: MCP9808 è un sensore di temperatura digitale ad alta precisione ±0,5°C I2C mini modulo. Sono dotati di registri programmabili dall'utente che facilitano le applicazioni di rilevamento della temperatura. Il sensore di temperatura ad alta precisione MCP9808 è diventato un'industria
Monitoraggio della temperatura utilizzando MCP9808 e Arduino Nano: 4 passaggi
Monitoraggio della temperatura utilizzando MCP9808 e Arduino Nano: MCP9808 è un sensore di temperatura digitale ad alta precisione ± 0,5 ° C mini modulo I2C. Sono dotati di registri programmabili dall'utente che facilitano le applicazioni di rilevamento della temperatura. Il sensore di temperatura ad alta precisione MCP9808 è diventato un'industria
ESP8266 Nodemcu Monitoraggio della temperatura utilizzando DHT11 su un server Web locale - Ottieni la temperatura e l'umidità della stanza sul tuo browser: 6 passaggi
ESP8266 Nodemcu Monitoraggio della temperatura utilizzando DHT11 su un server Web locale | Ottieni la temperatura e l'umidità della stanza sul tuo browser: Ciao ragazzi, oggi faremo un'umidità e l'umidità; sistema di monitoraggio della temperatura utilizzando ESP 8266 NODEMCU & Sensore di temperatura DHT11. La temperatura e l'umidità saranno ottenute da DHT11 Sensor & può essere visto su un browser quale pagina web verrà gestita
Misurazione della temperatura utilizzando STS21 e Particle Photon: 4 passaggi
Misurazione della temperatura utilizzando STS21 e Particle Photon: il sensore di temperatura digitale STS21 offre prestazioni superiori e un ingombro ridotto. Fornisce segnali calibrati e linearizzati in formato digitale I2C. La fabbricazione di questo sensore si basa sulla tecnologia CMOSens, che attribuisce al superiore
Monitoraggio della temperatura e dell'umidità utilizzando SHT25 e Particle Photon: 5 passaggi
Monitoraggio della temperatura e dell'umidità mediante SHT25 e Particle Photon: abbiamo recentemente lavorato su vari progetti che richiedevano il monitoraggio della temperatura e dell'umidità e poi ci siamo resi conto che questi due parametri svolgono effettivamente un ruolo fondamentale nella stima dell'efficienza di funzionamento di un sistema. Entrambi all'indu