Sommario:
- Passaggio 1: progettazione dell'amplificatore per strumentazione
- Passaggio 2: progettazione del filtro passa banda
- Passaggio 3: progettazione del filtro notch
- Passaggio 4: circuito combinato
- Passaggio 5: test dell'intero circuito
- Passaggio 6: risorse:
Video: Acquisizione, amplificazione e progettazione di circuiti di filtraggio di un elettrocardiogramma di base: 6 passaggi
2024 Autore: John Day | [email protected]. Ultima modifica: 2024-01-30 09:59
Per completare questo tutorial, le uniche cose necessarie sono un computer, l'accesso a Internet e un software di simulazione. Ai fini di questo progetto, tutti i circuiti e le simulazioni verranno eseguiti su LTspice XVII. Questo software di simulazione contiene librerie di oltre 1.000 componenti che rendono molto semplice la creazione di circuiti. Poiché questi circuiti saranno generalizzati, verrà utilizzato "UniversalOpAmp2" per ogni istanza in cui è necessario un amplificatore operazionale. Inoltre, ogni amplificatore operazionale era alimentato da un alimentatore +15V e -15V. Questi alimentatori non solo alimentano l'amplificatore operazionale, ma riducono anche la tensione di uscita se dovesse raggiungere uno di questi due estremi.
Passaggio 1: progettazione dell'amplificatore per strumentazione
Dopo che il segnale è stato acquisito, deve essere amplificato per eseguire calcoli e filtraggio su di esso. Per gli elettrocardiogrammi, il metodo di amplificazione più comune è l'amplificatore per strumentazione. Come accennato in precedenza, l'amplificatore per strumentazione ha molti vantaggi quando si tratta di circuiti di amplificazione, il più grande dei quali è l'elevata impedenza tra le tensioni di ingresso. Per costruire questo circuito, sono stati utilizzati 3 amplificatori operazionali in combinazione con sette resistori, con sei dei resistori equivalenti in grandezza. Il guadagno della maggior parte degli elettrocardiogrammi è di circa 1000 volte il segnale di ingresso [1]. L'equazione per il guadagno di un amplificatore per strumentazione è la seguente: Guadagno = 1 + (2*R1/R2) * (R7/R6). Per semplicità, si è ipotizzato che ogni resistore fosse di 1000 ohm, ad eccezione di R2, che è stato determinato essere di 2 ohm. Questi valori danno un guadagno 1001 volte maggiore della tensione di ingresso. Questo guadagno è sufficiente per amplificare i segnali acquisiti per ulteriori analisi. Tuttavia, usando l'equazione, il guadagno può essere quello che si vuole per il loro progetto di circuito.
Passaggio 2: progettazione del filtro passa banda
Un filtro passa-banda è un filtro passa-alto e un filtro passa-basso che lavorano in coordinamento di solito con un amplificatore operazionale per fornire ciò che è noto come banda passante. Una banda passante è una gamma di frequenze che possono passare mentre tutte le altre, sopra e sotto, vengono respinte. Gli standard del settore stabiliscono che un elettrocardiogramma standard deve avere una banda passante da 0,5 Hz a 150 Hz [2]. Questa ampia banda passante assicura che tutto il segnale elettrico proveniente dal cuore venga registrato e nessuno di essi venga filtrato. Allo stesso modo, questa banda passante rifiuta qualsiasi offset DC che potrebbe interferire con il segnale. Per progettare ciò, è necessario scegliere resistori e condensatori specifici in modo che la frequenza di taglio passa alto sia a 0,5 Hz e la frequenza di taglio passa basso sia a 150 Hz. L'equazione della frequenza di taglio per il filtro passa alto e passa basso è la seguente: Fc = 1/(2*pi*RC). Per i miei calcoli, è stato scelto un resistore arbitrario, quindi utilizzando l'equazione 4 è stato calcolato un valore del condensatore. Pertanto, il filtro passa alto avrà un valore del resistore di 100.000 ohm e un valore del condensatore di 3,1831 microfarad. Allo stesso modo, il filtro passa basso avrà un valore del resistore di 100.000 ohm e un valore del condensatore di 10,61 nano-farad. Viene mostrato un diagramma del filtro passa-banda con i valori regolati.
Passaggio 3: progettazione del filtro notch
Un filtro notch è essenzialmente l'opposto di un filtro passa-banda. Invece di avere un passa alto seguito da un passa basso, è un passa basso seguito da un passa alto, quindi si può essenzialmente eliminare una piccola banda di rumore. Per il filtro notch dell'elettrocardiogramma è stato utilizzato un filtro notch Twin-T. Questo design consente di filtrare una frequenza centrale e fornisce un grande fattore di qualità. In questo caso, la frequenza centrale da eliminare era a 60 Hz. Utilizzando l'equazione 4, i valori del resistore sono stati calcolati utilizzando un dato valore del condensatore di 0,1 microfarad. I valori dei resistori calcolati per una banda di arresto di 60 Hz erano 26, 525 ohm. Quindi R5 è stato calcolato come ½ di R3 e R4. C3 è stato anche calcolato come doppio del valore scelto per C1 e C2 [3]. Sono stati scelti resistori arbitrari per R1 e R2.
Passaggio 4: circuito combinato
Usando le reti, questi componenti sono stati posti in serie insieme e viene mostrata l'immagine del circuito completato. Secondo un articolo pubblicato da Springer Science, un guadagno accettabile del circuito ECG dovrebbe essere di circa 70 dB quando l'intero circuito è impostato [4].
Passaggio 5: test dell'intero circuito
Quando tutti i componenti sono stati inseriti in una serie, è stata necessaria la convalida del progetto. Testando questo circuito, sono stati condotti sia uno sweep transitorio che AC per determinare se tutti i componenti funzionavano all'unisono. Se così fosse, la tensione di uscita transitoria sarebbe ancora circa 1000 volte la tensione di ingresso. Allo stesso modo, quando è stata condotta la scansione AC, ci si aspetterebbe un diagramma di bode del filtro passa-banda con una tacca a 60 Hz. Guardando le immagini nella foto, questo circuito è stato in grado di raggiungere con successo entrambi questi obiettivi. Un altro test è stato quello di vedere l'efficienza del filtro notch. Per verificare ciò, è stato fatto passare un segnale a 60 Hz attraverso il circuito. Come nella foto, l'ampiezza di questa uscita era solo circa 5 volte maggiore dell'ingresso, rispetto a 1000 volte quando la frequenza è all'interno della banda passante.
Passaggio 6: risorse:
[1] "Sistema di misurazione ECG", Columbia.edu, 2020. https://www.cisl.columbia.edu/kinget_group/student_projects/ECG%20Report/E6001%20ECG%20final%20report.htm (consultato il 01 dicembre, 2020).
[2] L. G. Tereshchenko e M. E. Josephson, "Contenuto di frequenza e caratteristiche della conduzione ventricolare", Journal of electrocardiology, vol. 48, nr. 6, pp. 933–937, 2015, doi: 10.1016/j.jelectrocard.2015.08.034.
[3] "I filtri di arresto della banda sono chiamati filtri di rifiuto", Tutorial di elettronica di base, 22 maggio 2018.
[4] N. Guler e U. Fidan, "Trasmissione wireless del segnale ECG", Springer Science, vol. 30 aprile 2005, doi: 10.1007/s10916-005-7980-5.
Consigliato:
ECG automatizzato: simulazioni di amplificazione e filtro con LTspice: 5 passaggi
ECG automatizzato: simulazioni di amplificazione e filtro con LTspice: questa è l'immagine del dispositivo finale che costruirai e una discussione molto approfondita su ciascuna parte. Descrive anche i calcoli per ogni fase. L'immagine mostra il diagramma a blocchi per questo dispositivo Metodi e materiali: l'obiettivo di questo pro
10 consigli per la progettazione di circuiti che ogni progettista deve conoscere: 12 passaggi
10 suggerimenti per la progettazione di circuiti che ogni progettista deve conoscere: la progettazione di circuiti può essere piuttosto scoraggiante poiché le cose in realtà saranno molto diverse da quelle che leggiamo nei libri. È abbastanza ovvio che se hai bisogno di essere bravo nella progettazione di circuiti devi capire ogni componente e fare molta pratica
Come realizzare un circuito di amplificazione per chitarra - Tea2025b: 4 passaggi
Come realizzare un circuito di amplificazione per chitarra - Tea2025b: la maggior parte delle persone costruisce amplificatori per chitarra basati sull'IC LM386 che è soggetto a rumore o sulla mancanza di suono del TDA2030. Sebbene siano economici, non sono abbastanza buoni per produrre il meglio di un amplificatore per chitarra di base. Quindi useremo un altro IC chiamato TEA2025B wh
Simulazione della progettazione di circuiti+PCB su Proteus: 10 passaggi
Simulazione della progettazione di circuiti + PCB su Proteus: questa è una guida passo passo per ingegneri e hobbisti. In questo tutorial parlerò di simulazioni di circuiti & Progettazione PCB su Proteus 8, alla fine parlerò anche di incisione dei circuiti elettrici entro 5 minuti. Con t
AMPLIFICAZIONE: amplificatore per iPhone e stazione di ricarica: 8 passaggi
AMPLICHARGE: amplificatore per iPhone e stazione di ricarica: stanco di ascoltare musica solo con gli auricolari? Nessun altoparlante per guardare film con i tuoi amici Allora usa AMPLICHARGE!AMPLICHARGE è un dispositivo che può amplificare gli altoparlanti dell'iPhone E fungere da dock di ricarica per il tuo iPhone. Il dispositivo funziona al meglio con