Sommario:

Puzzle contadino, volpe, oca, grano: 6 passaggi
Puzzle contadino, volpe, oca, grano: 6 passaggi

Video: Puzzle contadino, volpe, oca, grano: 6 passaggi

Video: Puzzle contadino, volpe, oca, grano: 6 passaggi
Video: River Crossing Puzzle Explained (Not many Can Do This The First Time!) 2024, Novembre
Anonim
Puzzle contadino, volpe, oca, grano
Puzzle contadino, volpe, oca, grano

Quando ero bambino, ho preso in mano un libro che era di mio padre, chiamato The Scientific American Book Of Projects For The Amateur Scientist. Ho ancora il libro, e la mia comprensione è che è un libro difficile da leggere di questi tempi. Ma puoi leggerlo online ora. Questo libro è servito per introdurmi a molte cose ma il capitolo che ha suscitato il mio interesse è stato quello sulle macchine matematiche. Potrebbe benissimo essere la cosa che mi ha fatto iniziare la mia eventuale carriera nello sviluppo di software.

In questo capitolo sono descritte le macchine per risolvere i puzzle che utilizzano circuiti dell'epoca… che hanno preceduto i moderni circuiti integrati o persino i transistor (utilizzando i relè). Ma c'erano alcuni degli stessi concetti, quelli dei dispositivi logici che sono essenzialmente la stessa cosa che i computer moderni usano ancora oggi.

Al giorno d'oggi, puoi ottenere in modo semplice ed economico interi sistemi di computer per pochi dollari e programmare semplicemente il tuo puzzle o gioco. Ma puoi anche fare molte cose a un livello inferiore, usando le porte logiche da cui sono costruiti i computer, per creare hardware personalizzato per il tuo puzzle. Anche se questo potrebbe non essere pratico o ideale, ti consente di imparare come funzionano davvero i computer. È anche divertente.

Passaggio 1: materiali necessari

Puoi costruirlo interamente in Tinkercad Circuits e simulare l'effettivo funzionamento del puzzle.

Se vuoi costruirlo fisicamente, ecco cosa ti servirà:

4 interruttori a levetta oa scorrimento.

1 pulsante (momentaneo)

2 taglieri piccoli.

9 LED.

9 resistori da 1K.

1 7475 chip quad latch

2 7408 porte quadre AND

1 7432 porta OR quadrupla

1 pacco batteria con 3 celle AA o AAA.

set di ponticelli.

Per i chip della serie 74xx, puoi utilizzare qualsiasi variante di questi. Ad esempio, le versioni 74xx sono le TTL originali, ma puoi anche utilizzare le versioni 74LSxx (consumo energetico inferiore) o 74HCxx (versioni cmos anche a potenza inferiore) ecc. Ricorda solo che le versioni 74xx e 74LSxx sono facili da gestire, ma tutte le altre variazioni sono sensibili all'elettricità statica.

Passaggio 2: logica booleana

Logica booleana
Logica booleana
Logica booleana
Logica booleana

La logica booleana può sembrare spaventosa, ma in realtà è piuttosto semplice. Boolean significa solo che hai a che fare con solo 1 e 0, o True e False. O in elettronica, + e -. La parte logica si riduce a un sacco di "se questo, allora quello". Le operazioni logiche più elementari sono semplicemente queste tre cose: AND, OR e NOT. Queste sono chiamate porte, perché agiscono essenzialmente come porte letterali al flusso di elettricità attraverso un circuito.

La porta AND funziona come segue. Ha due ingressi e un'uscita. I due ingressi possono essere 1 o 0 e l'uscita è 1 o 0. Per la porta AND, se entrambi gli ingressi sono 1, l'uscita è 1. Altrimenti emette 0.

Per la porta OR, ha anche due ingressi e un'uscita. Se uno o l'altro input è 1, l'output è 1.

La porta finale è la porta NOT e ha solo un ingresso e un'uscita. Se l'ingresso è 1, l'uscita è 0. Se l'ingresso è 0, emette 1.

Le porte OR e AND possono anche avere più di 2 ingressi. Per semplificazione, possono essere mostrati con 2 o più linee che entrano in una porta, ma in realtà una porta a 3 ingressi è solo due porte a 2 ingressi con una che si alimenta nell'altra.

Ora sai tutto quello che devi sapere per costruire un computer. Anche i computer più moderni usano solo queste tre cose, anche se potrebbero usarne milioni.

Quindi costruiamo un puzzle.

Fase 3: Puzzle contadino, volpe, oca e grano

Puzzle contadino, volpe, oca e grano
Puzzle contadino, volpe, oca e grano

La prima cosa nel libro è un circuito logico per creare il classico puzzle del Contadino, della Volpe, dell'Oca e del Grano. Questo puzzle esiste da centinaia di anni in forme diverse. È un puzzle di logica di base con poche regole. Il puzzle è il seguente.

Un contadino ha una volpe, un'oca e del grano. Arriva a un fiume che deve attraversare, e c'è una barca, ma può contenere solo lui e un'altra cosa alla volta.

Non può lasciare la volpe con l'oca, perché la volpe mangerà l'oca. Questo è ciò che fanno le volpi, è solo la loro natura.

Non può lasciare l'oca con il grano, perché l'oca lo mangerà.

Come può portarli tutti e tre dall'altra parte del fiume sani e salvi?

Per creare questo puzzle abbiamo bisogno di alcune cose. Innanzitutto, con inizio con quattro interruttori, uno per ciascuno del contadino, la volpe, l'oca e il grano. Ecco come imposteremo quale va sulla barca.

In secondo luogo, abbiamo bisogno del puzzle per ricordare dove si trova tutto da un passo all'altro.

Quindi abbiamo bisogno di un pulsante per dirgli quando spostare la barca.

Infine, abbiamo bisogno di una logica per far rispettare le regole.

Passaggio 4: memoria

Memoria
Memoria
Memoria
Memoria

Per ricordare le posizioni degli oggetti in questo puzzle, useremo qualcosa di più avanzato dei relè utilizzati nel circuito originale. Quando è stato scritto questo libro, non c'erano transistor, ma avevano relè. Questi relè erano cablati in modo tale che quando si premeva un pulsante, si chiudessero e poi rimanessero chiusi fino a quando non si premeva il pulsante dall'altra parte.

Oggi useremo una parte comune ed economica chiamata latch a 4 bit. Un "bit" nella logica del computer si riferisce solo a un singolo 1 o 0. È la stessa cosa di una cifra. Questo circuito integrato (o "IC" o "Chip") contiene 4 componenti logici noti come flip flop. Un flip flop è solo un paio di porte configurate in modo tale che quando gli dai un 1 o uno 0 come input, emetterà un 1 o uno 0 e quindi rimarrà "bloccato". Da qui il nome flip/flop. Passerà da 1 a 0 o flopperà da 0 a 1 (o è il contrario?) e poi rimarrà lì. Fondamentalmente fa la stessa cosa dei quattro relè nel vecchio circuito.

Puoi creare un semplice flip flop con solo due porte, ma quelle in questo latch hanno una funzione extra (richiede alcune porte in più). Invece di far cambiare immediatamente l'uscita con la modifica dell'ingresso, ha un altro ingresso che abilita o disabilita gli ingressi. Normalmente, rimane disabilitato. Ciò ti consente di impostare due degli interruttori (l'agricoltore e un altro) prima che provi a "mandare" la barca dall'altra parte. Il nostro circuito è già più smart di quello vecchio.

Ora abbiamo la possibilità di impostare e ricordare le posizioni di tutti i principi nel nostro puzzle.

Ecco il nostro circuito finora: latch a 4 bit

Passaggio 5: logica delle regole

Logica delle regole
Logica delle regole

Per far rispettare le regole e indicare quando c'è un problema, useremo alcune porte logiche booleane per implementare i vincoli di cui abbiamo bisogno.

Avremo bisogno di quattro test per determinare se c'è un problema: se uno di questi è vero, allora accendi il segnale di avvertimento.

1. Se il grano e l'oca sono dall'altra parte del fiume e non il contadino.

2. Se la volpe e l'oca sono dall'altra parte del fiume e non il contadino.

3. Se l'agricoltore attraversa il fiume e nessuna volpe e nessuna oca sono con lui.

4. Se l'agricoltore attraversa il fiume e non c'è grano né oca con lui.

Nota il modo in cui ho formulato questo per abbinare esattamente la logica che useremo, che sono porte AND con le uscite normali o invertite dal latch, quelle invertite che agiscono come un "no" o un "NOT".

Poiché ognuno di essi può essere vero, causando un problema, tutti alimentano un cancello OR.

La logica completata, incluso il latch a 4 bit, è mostrata nella schermata. Questo proviene da un programma chiamato logicamente. Questo programma è eccellente per mostrare il flusso della logica mentre si manipolano gli interruttori, evidenziando in blu le connessioni con un valore '1'. Ho allegato il file che puoi caricare in modo logico.

Passaggio 6: prototipa un circuito reale

Prototipa un vero circuito
Prototipa un vero circuito

Ora possiamo creare un vero e proprio circuito funzionante. Usando i circuiti Tinkercad, possiamo farlo con la simulazione dell'aspetto e della funzionalità reali dell'hardware.

Tinkercad ha integrato un latch 7475 a 4 bit, quindi quella parte è facile. Per i gate, ho scelto di utilizzare due chip con 4 porte AND ciascuno (il 7408). Per creare quattro porte AND a 3 ingressi usiamo due porte AND con l'uscita di una che va in 1 ingresso dell'altra. Questo lascia 1 ingresso sul secondo e 2 ingressi sul primo, creando una porta AND a 3 ingressi. Per il cancello OR, faccio la stessa cosa. Un chip a quattro porte OR utilizza due porte OR con le uscite che vanno in una terza porta OR. Un cancello è rimasto inutilizzato.

Esegui la simulazione sui circuiti Tinkercad

Consigliato: