Sommario:

Interfacciamento del sensore giroscopio a 3 assi BMG160 con Arduino Nano: 5 passaggi
Interfacciamento del sensore giroscopio a 3 assi BMG160 con Arduino Nano: 5 passaggi

Video: Interfacciamento del sensore giroscopio a 3 assi BMG160 con Arduino Nano: 5 passaggi

Video: Interfacciamento del sensore giroscopio a 3 assi BMG160 con Arduino Nano: 5 passaggi
Video: Particle Photon BMG160 Triaxial Gyroscope Sensor Tutorial 2024, Luglio
Anonim
Image
Image

Nel mondo di oggi, più della metà dei giovani e dei bambini è appassionato di giochi e tutti coloro che ne sono appassionati, affascinati dagli aspetti tecnici del gioco, conoscono l'importanza del rilevamento del movimento in questo campo. Anche noi siamo rimasti stupiti dalla stessa cosa e proprio per portarla sulle tavole abbiamo pensato di lavorare su un sensore giroscopico in grado di misurare la velocità angolare di qualsiasi oggetto. Quindi, il sensore che abbiamo adottato per affrontare il compito è BMG160. BMG160 è un sensore giroscopio digitale triassiale a 16 bit in grado di misurare la velocità angolare in tre dimensioni della stanza perpendicolari.

In questo tutorial, dimostreremo il funzionamento di BMG160 con Arduino Nano.

L'hardware di cui avrai bisogno per questo scopo è il seguente:

1. BMG160

2. Arduino Nano

3. Cavo I2C

4. Scudo I2C per Arduino Nano

Passaggio 1: Panoramica BMG160:

Quello di cui hai bisogno..!!
Quello di cui hai bisogno..!!

Prima di tutto vorremmo familiarizzare con le caratteristiche di base del modulo sensore che è BMG160 e il protocollo di comunicazione su cui funziona.

BMG160 è fondamentalmente un sensore giroscopio digitale triassiale a 16 bit in grado di misurare le velocità angolari. È in grado di calcolare le velocità angolari in tre dimensioni della stanza perpendicolari, gli assi x, y e z, e fornire i corrispondenti segnali di uscita. Può comunicare con la scheda Raspberry Pi utilizzando il protocollo di comunicazione I2C. Questo particolare modulo è progettato per soddisfare i requisiti per le applicazioni consumer e per scopi industriali.

Il protocollo di comunicazione su cui funziona il sensore è I2C. I2C sta per il circuito inter-integrato. È un protocollo di comunicazione in cui la comunicazione avviene tramite le linee SDA (dati seriali) e SCL (orologio seriale). Consente di collegare più dispositivi contemporaneamente. È uno dei protocolli di comunicazione più semplici ed efficienti.

Passaggio 2: cosa ti serve.

Quello di cui hai bisogno..!!
Quello di cui hai bisogno..!!
Quello di cui hai bisogno..!!
Quello di cui hai bisogno..!!
Quello di cui hai bisogno..!!
Quello di cui hai bisogno..!!

I materiali di cui abbiamo bisogno per raggiungere il nostro obiettivo includono i seguenti componenti hardware:

1. BMG160

2. Arduino Nano

3. Cavo I2C

4. Scudo I2C per Arduino Nano

Passaggio 3: collegamento hardware:

Collegamento hardware
Collegamento hardware
Collegamento hardware
Collegamento hardware

La sezione di collegamento hardware spiega fondamentalmente le connessioni di cablaggio richieste tra il sensore e Arduino. Garantire connessioni corrette è la necessità di base mentre si lavora su qualsiasi sistema per l'output desiderato. Quindi, i collegamenti necessari sono i seguenti:

Il BMG160 funzionerà su I2C. Ecco lo schema elettrico di esempio, che mostra come cablare ciascuna interfaccia del sensore.

Di default, la scheda è configurata per un'interfaccia I2C, quindi consigliamo di utilizzare questo collegamento se sei altrimenti agnostico.

Tutto ciò di cui hai bisogno sono quattro fili! Sono necessarie solo quattro connessioni pin Vcc, Gnd, SCL e SDA e questi sono collegati con l'aiuto del cavo I2C.

Queste connessioni sono mostrate nelle immagini sopra.

Passaggio 4: misurazione del giroscopio a 3 assi Codice Arduino:

Codice Arduino di misurazione giroscopio a 3 assi
Codice Arduino di misurazione giroscopio a 3 assi
Codice Arduino di misurazione giroscopio a 3 assi
Codice Arduino di misurazione giroscopio a 3 assi

Iniziamo ora con il codice arduino.

Durante l'utilizzo del modulo sensore con arduino, includiamo la libreria Wire.h. La libreria "Wire" contiene le funzioni che facilitano la comunicazione i2c tra il sensore e la scheda arduino.

L'intero codice arduino è riportato di seguito per comodità dell'utente:

#include // L'indirizzo I2C BMG160 è 0x68(104)

#define Indirizzo 0x68

configurazione nulla()

{

// Inizializza la comunicazione I2C come MASTER

Wire.begin();

// Inizializza la comunicazione seriale, imposta la velocità di trasmissione = 9600

Serial.begin(9600);

// Avvia la trasmissione I2C

Wire.beginTransmission(Addr);

// Seleziona il registro dell'intervallo

Wire.write(0x0F);

// Configura l'intervallo di fondo scala 2000 dps

Wire.write(0x80);

// Interrompi trasmissione I2C

Wire.endTransmission();

// Avvia la trasmissione I2C

Wire.beginTransmission(Addr);

// Seleziona il registro della larghezza di banda

Wire.write(0x10);

// Imposta larghezza di banda = 200 Hz

Wire.write(0x04);

// Interrompi trasmissione I2C

Wire.endTransmission();

ritardo(300);

}

ciclo vuoto()

{

dati int non firmati[6];

// Avvia la trasmissione I2C

Wire.beginTransmission(Addr);

// Seleziona il registro dei dati del girometro

Wire.write(0x02);

// Interrompi trasmissione I2C

Wire.endTransmission();

// Richiedi 6 byte di dati

Wire.requestFrom(Addr, 6);

// Legge 6 byte di dati

// xGyro lsb, xGyro msb, yGyro lsb, yGyro msb, zGyro lsb, zGyro msb

if(Filo.disponibile() == 6)

{

data[0] = Wire.read();

data[1] = Wire.read();

data[2] = Wire.read();

data[3] = Wire.read();

data[4] = Wire.read();

data[5] = Wire.read();

}

ritardo(300);

// Converti i dati

int xGyro = ((data[1] * 256) + data[0]);

int yGyro = ((data[3] * 256) + data[2]);

int zGyro = ((data[5] * 256) + data[4]);

// Invia i dati al monitor seriale

Serial.print("Asse X di rotazione: ");

Serial.println(xGyro); Serial.print("Asse Y di rotazione: ");

Serial.println(yGyro); Serial.print("Asse Z di rotazione: ");

Serial.println(zGyro);

ritardo (500);

}

Passaggio 5: applicazioni:

Applicazioni
Applicazioni

BMG160 ha un numero vario di applicazioni in dispositivi come telefoni cellulari, dispositivi di interfaccia uomo-macchina. Questo modulo sensore è stato progettato per soddisfare i requisiti di applicazioni consumer come stabilizzazione dell'immagine (DSC e fotocamera-telefono), giochi e dispositivi di puntamento. Viene anche impiegato nei sistemi che richiedono il riconoscimento dei gesti e nei sistemi utilizzati nella navigazione indoor.

Consigliato: